No Image

Принципиальные схемы самодельных реле регуляторов напряжения автомобиля

СОДЕРЖАНИЕ
19 просмотров
30 ноября -0001

Принципиальные схемы самодельных реле регуляторов напряжения автомобиля

Принципиальные схемы самодельных реле регуляторов напряжения автомобиля

Электронные регуляторы напряжения автомобильных генераторов постоянного и переменного тока в последнее время находят все большее практическое применение. Это объясняется в основном тремя причинами: тем, что электронные регуляторы, во-первых, обладают высокой надежностью работы, во-вторых, обеспечивают возможность быстрой и удобной регулировки напряжения генератора и, в-третьих, не требуют каких-либо профилактических работ, связанных с эксплуатацией регулятора.

Автором статьи были исследованы различные варианты схем электронных регуляторов напряжения. На основе проведенной работы и опыта практической эксплуатации были выбраны два варианта электронных регуляторов напряжения для генераторов постоянного тока Г108М автомобиля «Москвич-408». Регуляторы могут быть использованы и с любыми другими генераторами постоянного тока, а также взяты за основу для регуляторов генераторов переменного тока (в этом случае ввиду отсутствия реле обратного тока схема регулятора упрощается). Электронный регулятор напряжения, также как и обычный, электромеханический, состоит из регулятора напряжения, реле обратного тока и реле ограничения максимального тока.

Структурная схема регулятора напряжения показана на рис. 1.

Этот узел является важнейшим и наиболее сложным узлом устройства. Он включает в себя измерительный элемент и усилительно-исполнительный элемент. Регулятор напряжения работает следующим образом. Напряжение, вырабатываемое генератором, поступает на измерительный элемент, где оно сравнивается с опорным напряжением или напряжением срабатывания измерительного элемента). Разность между напряжением генератора и опорным напряжением в виде управляющего сигнала поступает на усилительно-исполнительный элемент, который регулирует ток обмотки возбуждения генератора, поддерживая его выходное напряжение на заданном уровне.

Из большого числа известных измерительных элементов для регулятора напряжения выбраны два наиболее простых, но обладающих достаточно высокими значениями параметров. Измерительный элемент, схема которого показана на рис. 2, а, выполнен по мостовой схеме.

Рис. 2. Схемы измерительных элементов

Он работает следующим образом. При повышении напряжения генератора соответственно увеличивается напряжение на переменном резисторе R2 до напряжения стабилизации стабилитрона Д1. При дальнейшем увеличении входного напряжения напряжение на этом резисторе не изменяется. В зависимости от положения движка резистора R2 к базе транзистора Т1 прикладывается напряжение от 5,5 В до напряжения стабилизации стабилитрона, что вызывает появление почти такого же (несколько меньшего) напряжения на резисторе R5. При дальнейшем увеличении входного напряжения входит в режим стабилизации стабилитрон Д2. Это происходит при достижении входным напряжением значения, равного сумме напряжений на резисторе R5 и напряжения стабилизации стабилитрона Д2, и вызывает увеличение тока через резистор R5, увеличение напряжения на нем и закрывание транзистора Т1 (напряжение на его эмиттере становится больше напряжения на его базе). Если подключить к выходу такого измерительного элемента усилитель, нагруженный цепью обмотки возбуждения генератора, его напряжение будет поддерживаться на заданном уровне.

Измерительный элемент, выполненный по схеме рис. 2, б, работает несколько иначе. Стабилитрон Д1 включен в цепь базы транзистора Т1, который закрыт до тех пор, пока входное напряжение (с учетом положения движка резистора R2) не достигнет напряжения стабилизации стабилитрона. Ток стабилитрона открывает транзистор Т1 и, воздействуя через усилительный элемент регулятора на обмотку возбуждения, вызовет уменьшение выходного напряжения генератора.

Усилительно-исполнительный элемент электронного регулятора напряжения должен обеспечивать полное прекращение тока возбуждения генератора в соответствии с сигналом измерительного элемента и возможно меньшее падение напряжения на исполнительном транзисторе (не более 0,25—0,4 В), что уменьшает рассеиваемую транзистором мощность и повышает стабильность работы всего устройства. Кроме этого, усилительно-исполнительный элемент должен обладать высокой чувствительностью с тем, чтобы коммутацию большого тока (до 3,0—3,5 А) обеспечить малым управляющим током (10—20 мА).

На рис. 3, а и б показаны схемы усилительно-исполнительных элементов, предназначенных для работы с описанными измерительными элементами (рис. 2, а и б, соответственно).

Рис. 3. Схемы усилительно-исполнительных элементов

Оба усилительно-исполнительных элемента обладают практически одинаковыми параметрами и отличаются в основном тем, что один из них (рис. 3, а) работает как усилитель без переворачивания фазы, а второй изменяет фазу сигнала на 180°, поскольку этого требует измерительный элемент.

Реле обратного тока в электронном регуляторе напряжения обычно выполняют на полупроводниковых диодах. Диоды чаще всего выбирают кремниевые, поскольку они обладают не только более высокой термостабильностью по сравнению с германиевыми, но и большим прямым падением напряжения на них (1,1—1,3 В), используемым для работы реле ограничения максимального тока (германиевые диоды имеют прямое падение напряжения 0,5—0,8 В).

В качестве реле ограничения максимального тока обычно используют транзистор, включенный параллельно измерительному элементу электронного регулятора напряжения и воздействующий на усилительно-исполнительный элемент таким образом, чтобы ток обмотки возбуждения генератора прекращался при увеличении тока нагрузки выше допустимой величины. Управляющим сигналом для транзистора реле ограничения максимального тока является падение напряжения на диодах реле обратного тока, через которые протекает общий ток нагрузки генератора.

Принципиальные схемы двух электронных регуляторов напряжения приведены на рис. 4 и 5.

Рис. 4. Принципиальная схема электронного регулятора

Рис. 5. Принципиальная схема улучшенного электронного регулятора

Особенностью второго регулятора (рис. 5) по сравнению с первым является подключение измерительного элемента не к выводу «Я» регулятора, а к выводу «Б», на котором напряжение «скорректировано» на величину падения напряжения на диодах Д4—Д6. Поэтому регулятор по схеме рис. 5 предпочтительнее, однако для сохранения высокой чувствительности регулятора в его измерительном элементе должен быть установлен транзистор с большим статическим коэффициентом передачи тока Вст (не менее 120).

Работу электронного реле-регулятора удобно рассмотреть по схеме, которая показана на рис. 4. После запуска двигателя генератор выдает небольшое начальное напряжение (6—7 В) за счет остаточного магнетизма стального корпуса и полюсных наконечников. Это напряжение, приложенное к выводу «Я», открывает транзистор Т1, через который начинает протекать ток базы транзистора Т2. Транзистор Т2 также открывается, что приводит в свою очередь к открыванию транзистора Т3. Через транзистор Т3 начинает протекать ток обмотки возбуждения генератора, вследствие чего его выходное напряжение возрастает. При напряжении генератора 9,9 В открывается стабилитрон Д1, поддерживая с этого момента на делителе R2—R3 постоянное напряжение. Напряжение на базе транзистора Т1 устанавливают в пределах 5,3—9,9 В. Напряжение генератора продолжает возрастать до величины, равной сумме напряжения стабилизации стабилитрона Д2 и падения напряжения в резисторе R5 (5,0—9,6 В), после чего стабилитрон Д2 входит в зону стабилизации, вызывая повышение напряжения на резисторе R5. Это приводит к резкому закрыванию транзистора Т1, а вслед за ним и транзисторов Т2 и Т3, и прекращению тока возбуждения генератора. Таким образом, напряжение генератора в пределах от 5,0 + 6,9 = = 11,9 В до 9,6 + 6,9 = 16,5 В будет поддерживаться на заданном уровне, которое устанавливают переменным резистором R2.

Поскольку управление током возбуждения генератора носит ключевой характер, а обмотка возбуждения обладает значительной индуктивностью, в ней при резком прекращении тока, возникают всплески напряжения самоиндукции, могущие вывести из строя транзистор Т3. Поэтому этот транзистор защищен диодом Д7, -включенным параллельно обмотке ОВ возбуждения генератора.

В качестве реле обратного тока работают диоды Д4 —Д6. Параллельное включение диодов имеет целью уменьшение рассеиваемой на них мощности при протекании тока нагрузки, достигающего 20 А. Такое включение диодов требует их подбора по одинаковому прямому падению напряжения на каждом из них при токе 6—7 А.

Реле ограничения максимального тока выполнено на транзисторе Т4, переменном резисторе R7 и диоде Д3. Диод предохраняет реле от разрядного тока аккумуляторной батареи. Падение напряжения от протекающего через диоды Д4—Д6 тока нагрузки приложено к резистору R7, а с его движка — к базе транзистора Т4. В зависимости от тока нагрузки и положения движка резистора R7 на переход эмиттер — база этого транзистора поступает большее или меньшее напряжение. Если это напряжение достигает некоторой определенной величины, транзистор открывается, шунтируя транзисторы Т2 и Т3 и уменьшая тем самым ток обмотки возбуждения генератора. Напряжение генератора, а значит, и ток нагрузки уменьшаются. Реле ограничения максимального тока начинает работать только при перегрузках генератора. Режим управления током генератора — пульсирующий.

В описываемых устройствах не предусмотрена защита транзистора Т3 от коротких замыканий цепи его коллектора, которое возможно при пробое обмотки возбуждения генератора или случайном замыкании зажима «Ш» на корпус автомобиля. Принципиально такая защита может быть введена в устройства, но ее необходимость сомнительна, поскольку пробой обмоток возбуждения генераторов — явление очень редкое, а случайных замыканий вообще не следует допускать.

Электронный регулятор, собранный по схеме рис. 4, показал хорошие эксплуатационные характеристики. При изменении тока нагрузки от 5 до 15—18 А напряжение в бортовой сети изменяется на 0,2—0,25 В. Регулятор напряжения, выполненный по схеме рис. 5, обладает еще более высокой степенью стабилизации напряжения. Расход энергии от аккумуляторной батареи, к которой постоянно подключена цепочка R1—R3, очень невелик — примерно 10— 15 мА. При длительных стоянках автомобиля аккумуляторную батарею всегда следует отключать.

По принципу работы регулятор, собранный по схеме рис. 5, не отличается от предыдущего. Особенности его работы были отмечены выше.

Для повышения надежности и температурной стабильности работы регулятора диоды и транзисторы выбраны кремниевые (за исключением диода Д3, рис. 4, и Д2, рис.5). Переменные резисторы — проволочные с законтривающейся осью.

Читайте также:  Как завести дизель если не схватывает

Транзистор Т1 в регуляторе, собранном по схеме рис. 4, должен иметь коэффициент Вст не менее 50. Транзисторы Т4 в обоих регуляторах желательно выбрать с достаточно высоким Вст. Остальные транзисторы подбора не требуют. Стабилитроны следует подобрать по напряжению стабилизации: Д1 — 9,9 В, Д2 — 6,9 В (рис. 4); Д1 — 9,4 В (рис.5). Напряжения стабилизации стабилитронов определяют границы диапазона регулирования напряжения генератора. Резисторы R6 (рис. 4) и R7 (рис. 5) должны быть рассчитаны на мощность рассеяния не менее 4 Вт.

Транзистор П210А необходимо устанавливать на радиатор в виде пластины или уголка из дюралюминия толщиной 4—5мм и общей площадью 30—40 см2. На таком же радиаторе площадью 50—70 см2 следует крепить и диоды Д4—Д6. На этих диодах выделяется значительная тепловая мощность.

Правильно собранный электронный регулятор начинает работать сразу. Напряжение устанавливают при работающем двигателе на уровне 13,7—14,0 В. Затем устанавливают максимальный ток нагрузки 20 А. Регулировочные работы можно провести и до установки регулятора на автомобиль. Для этого необходимы два источника постоянного тока: стабилизированный с плавной регулировкой напряжения в пределах от 10 В до 17 В и током нагрузки до 5 А и любой на 12—13 В с допустимым током нагрузки 20—25 А (например, автомобильный аккумулятор 6СТ42).

Сначала собирают стенд по схеме, изображенной на рис. 6, а.

Рис. 6. Схемы регулировочных стендов для налаживания электронных регуляторов

Амперметр ИП2 должен иметь шкалу до 5 А. Переменные резисторы электронного регулятора устанавливают в положения, соответствующие нижним пределам регулировки (R2 — в нижнее, R7 — в верхнее по схеме, рис. 4, R2 и R8 — в верхнее, рис. 5). Устанавливают источник стабилизированного напряжения на 10 В, включают тумблер В1 и проверяют ток амперметра ИП2, который должен быть примерно равен I = Uпит/Rl (этот ток имитирует ток возбуждения генератора). Затем, медленно увеличивая напряжение источника, замечают по вольтметру ИП1 момент резкого прекращения тока, протекающего через амперметр. Уменьшают теперь напряжение источника до момента появления тока в цепи амперметра. Разность между этими напряжениями определяет чувствительность реле напряжения. Хорошей чувствительностью следует считать 0,1 В, допустимой — 0,2 В. При более низкой чувствительности следует подобрать транзистор Т1 с большим коэффициентом Вст. Затем проверяют чувствительность на верхнем пределе регулирования напряжения (R2 переводят, в другое крайнее положение). Чувствительность на верхнем пределе может быть хуже не более чем на 10-30%. Устанавливают резистор R2 и положение, соответствующее напряжению срабатывания реле напряжения, рамному 14 В.

Затем собирают peгулировочный стенд по схеме, показанной на рис. 6,б. Амперметр ИП1 должен быть рассчитан на ток до 25 А, а ИП2 — до 5 А. Реостат R2 должен допускать рассеяние мощности до 20 Вт. Устанавливают движок R2 примерно на середину и включают тумблер В1. Амперметр ИП2 должен показывать ток 20—25 А. Ток амперметра ИП1 должен быть равен нулю, т. е. регулятор закрыт по току перегрузки. Если теперь выключить тумблер B1, вывести движок резистора R7 (R9, по рис. 5) регулятора в нижнее по схеме положение, соответствующее максимальному пределу ограничения тока нагрузки, и снова включить тумблер, ток амперметра ИП2 останется прежним, а амперметр ИП1 покажет ток, равный Uпит/Rl. Тумблер В1 следует включать на короткое время, поскольку аккумуляторная батарея при этом интенсивно разряжается. Для установки предела ограничения максимального тока нагрузки необходимо установить ползунком реостата R2 ток амперметра ИП2, равный 20 А, а затем, вращая ось резистора R7 (R8, рис. 5) электронного регулятора, добиться прекращения тока, протекающего через амперметр ИП1.

Электронный регулятор напряжения удобно устанавливать на автомобиле рядом с РРН с тем, чтобы при необходимости можно было легко их переключать.

В заключение следует отметить, что не все экземпляры автомобильных генераторов имеют начальное напряжение около 6 В. У некоторых из них оно не превышает 1—2 В. С такими генераторами электронный регулятор работать не сможет — транзистор Т3 останется закрытым, и ток обмотки возбуждения будет равным нулю. В подобных случаях электронный регулятор напряжения следует выполнить по схеме, изображенной на рис. 7.

Рис. 7. Вариант принципиальной схемы электронного регулятора

Характеристики этого регулятора практически такие же, как и у описанных выше устройств. Транзистор Т1 можно заменить на КТ602, Т5 — на МП115. Резистор R6 должен рассеивать мощность не менее 4 Вт. Можно также обойтись незначительными изменениями базовой цепи транзистора Т4 в регуляторе по схеме рис. 4. Изменения сводятся к включению диода между базой транзистора и движком резистора R7 и изменению места включения диода Д3 — он должен быть включен в той же полярности в разрыв нижнего по схеме вывода резистора R7. Однако при этом несколько ухудшится точность поддержания напряжения на выходном зажиме «Б». Оба диода — типа Д223Б.

В помощь радиолюбителю» выпуск 53

Усовершенствование электронного регулятора напряжения.

В сборнике «В помощь радиолюбителю» выпуск 53 в статье «Электронный регулятор напряжения» (с. 81 — 90) описаны несколько электронных регуляторов напряжения для автомобиля. В усилительно-исполнительном элементе всех этих устройств использован мощный германиевый транзистор П210А (Т3). Выбор именно этого транзистора был обусловлен отсутствием кремниевого аналога структуры р—n—р.

Тем не менее очевидно, что кремниевый транзистор здесь предпочтительнее, так как обеспечивает более надежную работу регулятора напряжения в условиях повышенной температуры. Поэтому была разработана схема регулятора, аналогичного по принципу работы и характеристикам устройству по схеме рис. 5 в упомянутой выше статье, но с мощным кремниевым транзистором структуры п—р—п.

Регулятор (см. схему), имеет некоторые особенности, на которых целесообразно кратко остановиться. Использование кремниевого транзистора КТ808А (V9; можно также использовать и транзистор КТ803А) потребовало включения в устройство дополнительного транзистора V8 (П303А; его можно заменить на П302 — П304, П306, П306А со статическим коэффициентом передачи тока не менее 15), повышающего к тому же чувствительность устройства.

Рис. Схема регулятора напряжения

В измерительном элементе в делителе напряжения вместо резистора использована диодная цепь V1, V2, обеспечивающая температурную компенсацию стабилитрона V3. Этим изменением температурная нестабильность регулятора напряжения в целом сведена практически к нулю.

Незначительные изменения в базовой цепи транзистора V5 по сравнению с исходным вариантом принципиально не изменили работы ограничителя максимального тока генератора, но улучшили плавность и повысили точность установки порога ограничения.

Проверка реле напряжения

1200 руб. за фотоотчёт

Платим за фотоотчёты по ремонту авто. Заработок от 10 000 руб/мес. Пишите:

Проверка регулятора напряжения генератора бывает необходима в случае когда начали наблюдаться проблемы с аккумулятором. В частности, он стал недозаряжаться или перезаряжаться. При появлении такой неисправности как раз самое время проверить реле регулятора напряжения генератора.

Реле должно отключатся при 14,2-14,5В

В задачу этого несложного прибора входит регулирование значения напряжения электрического тока, которое подается от генератора к аккумуляторной батарее. При его выходе из строя, АКБ или недостаточно заряжается или наоборот перезаряжается, что также опасно, поскольку при этом значительно снижается ресурс аккумулятора.

Согласитесь, что такая перспектива из-за одной небольшой детальки не очень хорошая. Именно поэтому так важно контролировать рабочее состояние регулятора напряжения (также его еще могут называть таблетка или шоколадка). Но чтобы правильно проверить регулятор напряжения необходимо знать его тип и несколько важных особенностей.

Типы регуляторов напряжения

Разобравшись с тем, каких типов бывают эти устройства, в чем их особенности и свойства, придет полное понимание проводимых при проверке процедур. Также это даст ответ, по какой схеме, каким способом и как проверять регулятор напряжения генератора.Регуляторы бывают двух типов:

В первом случае имеется в виду, что корпус регулятора совмещен со щеточным узлом непосредственно в корпусе генератора. Во втором случае регулятор представляет собой отдельный узел, который расположен на корпусе машины, в моторном отсеке, и к нему идут провода от генератора, и от него уже тянутся провода к аккумуляторной батарее.

Особенностью регуляторов является то, что их корпуса неразборные. Они, как правило, залиты герметиком или специальной смолой. Да и ремонтировать их особого смысла нет, поскольку стоит аппарат недорого. Поэтому основная проблема в данном ключе состоит в проверке реле регулятора напряжения генератора. Независимо от типа регулятора признаки напряжения будут одни и те же.

Признаки неисправности

Так, в случае пониженного напряжения аккумуляторная батарея попросту не будет заряжаться. То есть, утром вы не сможете завести машину, возможно даже не засветятся лампы на приборной панели или неприятности возникнут во время движения. Например, тусклые фары в темное время суток, неустойчивая работа электросистемы (проблемы с электроприборами — дворниками, обогревателями, магнитолой и так далее).

В случае повышенного напряжения велика вероятность уменьшения уровня электролита в банках аккумулятора, или его выкипание. Также может появиться белый налет на корпусе АКБ. При перезарядке батарея может вести себя неадекватно.

Признаки, неисправности и ремонт генератора и регулятора напряжения

Кроме этого, еще можно выделить следующие признаки неисправности регулятора напряжения (в отдельных случаях некоторых из них могут как иметь место, так и отсутствовать, все зависит от конкретной ситуации):

  • при включении зажигания на приборной панели не светится контрольная лампочка (хотя это может быть признаком и других неисправностей, например, того, что он перегорела, отпал контакт и так далее);
  • после запуска не гаснет индикатор аккумулятора на приборной панели, то есть, имеют место явные неисправности в зарядке АКБ;
  • яркость свечения фар становится зависима от оборотов двигателя (это можно проверить где-нибудь в безлюдном месте, установив автомобиль напротив стены и погазовать — если при этом свечение будет меняться, то, скорее всего, регулятор напряжения неисправен);
  • машина перестала нормально заводиться с первого раза;
  • постоянно разряжается аккумуляторная батарея;
  • при превышении количества оборотов двигателя свыше 2000 об/мин индикаторы на приборной панели отключаются;
  • динамические характеристики машины падают, особенно это заметно на высоких оборотах двигателя;
  • в некоторых случаях может закипеть аккумуляторная батарея.
Читайте также:  Ваз 2109 черный цвет фото

Причины отказа реле-регулятора

Причинами выхода регулятора напряжения из строя могут быть:

  • короткое замыкание в цепи, в том числе межвитковое замыкание обмотки возбуждения;
  • выход из строя выпрямительного моста (пробой диодов);
  • переполюсовка или неправильное подключение к выводам аккумулятора;
  • проникание влаги в корпус регулятора и/или генератора (например, во время мойки машины или езды в сильный дождь);
  • механические повреждения узла;
  • естественный износ узла, в том числе, щеток;
  • плохое качество непосредственно проверяемого аппарата.

Существует ряд несложных методов проверки регулятора вне зависимости от того, съемный ли этот узел или нет.

Простейший способ проверки регулятора напряжения генератора

Самый простой метод проверки регулятора состоит в замере мультиметром напряжения на аккумуляторных клеммах. Однако стоит сразу оговориться, что приведенный далее алгоритм не дает 100% вероятности выхода из строя именно регулятора. Возможно, вышел из строя непосредственно генератор. Но преимущество данного метода заключается в том, что он прост, и не нужно выполнять демонтаж устройства из машины. Итак, алгоритм проверки регулятора напряжения генератора мультиметром таков:

  • Выставить тестер в режим измерения постоянного напряжения на предел около 20 В (зависит от конкретной модели, главное, чтобы он максимально точно показывал значения до 20 В).
  • Запустить двигатель.
  • Измерить напряжение на клеммах аккумулятора в режиме холостого хода (1000. 1500 об/мин). При исправном регуляторе и генераторе значение должно находиться в пределах 13,2. 14 В.
  • Увеличить обороты до значений 2000. 2500 об/мин. В нормальном состоянии электросхемы соответствующее напряжение вырастет до 13,6. 14,2 В.
  • При увеличении оборотов до 3500 об/мин и выше напряжение не должно превышать 14,5 В.

Если в процессе проверки значения напряжения очень отличаются от приведенных, то, скорее всего, у машины неисправен регулятор напряжения. Помните, что напряжение не должно падать ниже 12 В и не должно повышаться более 14,5 В.

Как было указано выше, регулятор может быть отдельный или совмещенный с генератором. В настоящее время практически на всех иномарках, да и на большинстве современных отечественных машин устанавливаются совмещенные реле. Это обусловлено спецификой их работы и экономией места.

Проверка совмещенного реле-регулятора

Проверка регулятора напряжения ВАЗ 2110

Для выполнения соответствующей проверки необходимо собрать схему, приведенную на рисунке. Для этого используются зарядное устройство или блок питания с регулируемой нагрузкой (важно, чтобы с его помощью была возможность регулировать значение напряжение в цепи), лампочку на 12 В (например, от поворотника или фары, мощностью 3. 4 Вт), мультиметр, непосредственно регулятор напряжения (это может быть как от генератора bosch, так и valeo или другой). Используемые для коммутации провода желательно иметь с “крокодилами”.

Проверка регулятора напряжения у генератора 37.3701: 1 — аккумуляторная батарея; 2 — вывод «масса» регулятора напряжения; 3 — регулятор напряжения; 4 – вывод «Ш» регулятора; 5 — вывод «В» регулятора; 6 — контрольная лампа; 7 — вывод «Б» регулятора напряжения.

Если собрать схему, напряжение в которой будет со стандартным значением 12,7 В, то лампочка будет просто светиться. Но если с помощью регулятора напряжения поднять его значение до 14. 14,5 В, то при исправном реле лампочка должна погаснуть. В противном случае регулятор неисправен. То есть, при достижении напряжения в 14. 14,5 В (в зависимости от модели машины и, соответственно, регулятора) и выше лампочка тухнет, а при понижении до такого же уровня вновь загорается.

Проверка регулятора напряжения ВАЗ 2107

Проверка регулятора напряжения на автомобилях ВАЗ 2108/2109

До 1996 года на машине ВАЗ 2107 с генератором марки 37.3701 устанавливался регулятор напряжения старого образца (17.3702). Процедура проверки приводилась выше. После 1996 года использовался более современный генератор марки Г-222 (стоит интегральный регулятор РН Я112В(В1).

Как видите, алгоритм проверки у всех регуляторов практически одинаков. Разница состоит лишь в значениях отсечки, когда срабатывает реле.

Проверка отдельного регулятора

Проверка регулятора напряжения у генератора Г-222: 1 — аккумуляторная батарея; 2 — регулятор напряжения; 3 — контрольная лампа.

Как правило, отдельные регуляторы напряжения устанавливали на старые машины, включая отечественные ВАЗы. Но некоторые производители продолжают так поступать до сих пор. Процесс проверки аналогичен. Для этого нужно иметь блок питания с регулятором значения напряжения, лампочку на 12 В, мультиметр и непосредственно проверяемый регулятор.

Для проверки нужно собрать схему, приведенную на рисунке. Сам же процесс аналогичен приведенному выше. В нормальном состоянии (при напряжении в 12 В) лампочка светится. При увеличении значения напряжения до 14,5 В она тухнет, а при понижении — светится вновь. Если в процессе лампа светится или тухнет при других значениях — значит, регулятор вышел из строя.

Проверка реле типа 591.3702-01

Схема проверки реле типа 591.3702-01

Также до сих пор можно встретить регулятор напряжения типа 591.3702-01, который устанавливали еще на заднеприводные ВАЗы (начиная от ВАЗ 2101 и заканчивая ВАЗ 2107), ГАЗ и Москвичи. Аппарат крепится отдельно, и устанавливается на кузове. В целом же проверка аналогична описанному выше, однако отличия состоят в используемых при этом контактах.

В частности, на нем есть два основных контакта — «67» и «15». Первый из них — это минус, а второй — плюс. Соответственно, для проверки необходимо собрать схему, приведенную на рисунке. Принцип проверки остается прежним. В нормальном состоянии, при напряжении в 12 В лампочка светится, а при повышении соответствующего значения до 14,5 В — тухнет. При возвращении значения в исходное значение лампочка загорается вновь.

Классическим регулятором такого типа является аппарат марки РР-380, устанавливаемый на машины ВАЗ 2101 и ВАЗ 2102. Приводим справочные данные, касающиеся этого регулятора.

Регулируемое напряжение при температуре регулятора и окружающей среды (50±3)° С, В:
на первой ступени не более 0,7
на второй ступени 14,2 ± 0,3
Сопротивление между штекером «15» и массой, Ом 17,7 ± 2
Сопротивление между штекером «15» и штекером «67» при разомкнутых контактах, Ом 5,65 ± 0,3
Воздушный зазор между якорем и сердечником, мм 1,4 ± 0,07
Расстояние между контактами второй ступени, мм 0,45 ± 0,1

Проверка трехуровневого реле

Регулируемый источник питания

Некоторые автовладельцы устанавливают на свои машины вместо стандартных “шоколадок” трехуровневые реле, которые являются технологически более продвинутыми. Их отличием является наличие трех уровней напряжения, при котором происходит отсечка питания аккумулятора (например, 13,7 В, 14,2 В и 14,7 В). Соответствующий уровень можно выставить вручную, воспользовавшись специальным регулятором.

Такие реле являются более надежными и позволяют гибко регулировать уровень напряжения отсечки. Что касается проверки такого регулятора, то она полностью аналогична описанным выше процедурам. Только при этом не забудьте про значение, которое выставлено на реле, и соответственно, проверяйте его по мультиметру.

Проверка генератора

Существует один метод, с помощью которого можно проверить работоспособность генератора автомобиля, оборудованного реле регулятора 591.3702-01 с элементами диагностики. Он заключается в следующем:

  • отключить провода, которые шли к контактам 67 и 15 регулятора напряжения;
  • подключить к ней лампочку (исключив из схемы регулятор);
  • снять с плюсовой клеммы аккумуляторной батареи провод.

В случае, если в результате этих действий двигатель не заглох — значит, можно утверждать, что генератор автомобиля в порядке. В противном случае — неисправен и нуждается в проверке и замене.

Рекомендации по увеличению срока службы регулятора

Для того чтобы увеличить срок службы регулятора напряжения, необходимо придерживаться нескольких несложных правил, направленных на выполнение профилактических мер. Среди них:

  • не допускайте чрезмерного загрязнения генератора, периодически проводите осмотр его состояния, а при необходимости и демонтаж с чисткой агрегата;
  • проверяйте натяжку ремня генератора, при необходимости подтягивайте его (самостоятельно или в автосервисе);
  • контролируйте состояние обмоток генератора, в частности, не допускайте их потемнения;
  • проверяйте контакт на управляющем проводе реле-регулятора, причем как его качество, так и наличие на нем окисления;
  • выполняйте периодическую проверку напряжения на аккумуляторной батарее автомобиля с запущенным двигателем.

Соблюдение этих простых правил позволят вам увеличить ресурс и срок эксплуатации как генератора, так и регулятора напряжения автомобиля.

Итоги

Проверка реле-регулятора напряжения — дело несложное, и с ней может справиться практически любой автолюбитель, владеющий элементарными навыками ремонтных работ. Главное, иметь для этого соответствующие инструменты — мультиметр, блок питания с регулятором напряжения (хотя можно подключить и к аккумулятору с зарядным устройством), лампу на 12 В и кусочки проводов для монтирования соответствующей схемы.

Читайте также:  Замена вискомуфты газель cummins

В случае, если в процессе проверки вы выяснили, что регулятор вышел из строя, то он подлежит обязательной замене (ремонтные работы как правило не производятся). Главное, не ошибиться при его выборе и приобрести ту деталь, которая подходит именно для вашей машины.

Реле-регулятор напряжения генератора: схема, принцип действия

Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме “звезда” (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 (инжектор или карбюратор в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на исполнительный механизм. Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на делителе напряжения, который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора (“Форд Сиерра” также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора (“Ланос” или отечественная “девятка” у вас – не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения генератора ВАЗ 2101 имеет устаревшую конструкцию – он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, “копеек”, иномарок одинаково. Как только произведете снятие, посмотрите на щетки – у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора “Бош” (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

Комментировать
19 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector